Программа Гильберта

Основная задача Гильберта, как он ее формулирует: «Восстановить прежнюю добрую славу непоколебимой строгости математики, как будто потерянную ею под ударами парадоксов теории множеств». Надо сказать, что Гильберт не был против самой теории Кантора и тем более не отрицал ее значения и вклада в историю математики, тем не менее, он прекрасно понимал, что математика не может остаться прежней, в связи с теми противоречиями, что показала теория множеств. Следовательно, единственный путь сохранить математику как строгую науку, не терпящую сослагательного

наклонения, преобразовать ее. Орудием его является знакомый математикам с давних времен Аксиоматический метод 1 . Его идея впервые была высказана в связи с построением геометрии в Древней Греции (Пифагор, Платон, Аристотель, Евклид), откуда ее и взял Гильберт. Он преобразовал метод построения геометрии по примеру Евклида, и создал концепцию формального аксиоматического метода, которая ставит задачу точного описания логического средств вывода теорем из аксиом.

Как это описывает сам Гильберт, в своей работе «Основания геометрии»: есть два метода, один генетический и другой аксиоматический, первый

отличается тем, что «общее понятие действительного числа развивается в нем из простого понятия о числе путем последовательных обобщений» 2 . Но этот метод является единственно подходящим лишь для изучения понятия числа, а «для окончательного оформления и полного логического обоснования содержания нашего познания предпочтительнее аксиоматический метод» 3 . Это такой способ построения научной теории, при котором в ее основу кладутся некоторые исходные положения — аксиомы, из которых все остальные утверждения этой теории должны выводиться чисто логическим путем, посредством доказательств. Построение теории таким способом называется дедуктивным 4 .

Такие доказательства применяются во многих науках, но основной областью применения являются математика и логика. Таким образом, основная идея Гильберта — полная формализация языка науки, при которой ее суждения рассматриваются как последовательности знаков (формулы), приобретающие смысл лишь в решении конкретной задачи и зависящие от интерпретации. Кроме этого, чтобы вывести из этих аксиом теоремы требуется особый метод вывода, правила которого Гильберт также сформулировал.

Доказательство в такой теории — это некоторая последовательность формул, каждая из которых либо есть аксиома, либо получается из предыдущих формул последовательности, следуя одному из правил вывода. Главным требованием Гильберта, предъявляемым к системам, сконструированным таким способом — непротиворечивость аксиом. Как говорит об этом В. А. Светлов: «Такая математика подобна шахматной игре, в которой фигуры — ограниченный запас символов, а расположенные фигур на доске — объединение символов в формулу» 5 .



1 Star2 Stars3 Stars4 Stars5 Stars (Пока оценок нет)

Вы сейчас читаете сочинение Программа Гильберта